PROBABILITY RULES

Complement (p. 190) $P(\bar{E}) = 1 - P(E)$ Addition Rule (p. 200 - mutually exclusive):P(A or B) = P(A) + P(B)Addition Rule (p. 201 - not mut. excl):P(A or B) = P(A) + P(B) - P(A and B)Multiplication Rule (p. 211 - independent)P(A and B) = P(A) * P(B)Multiplication Rule (p. 214 - dependent)P(A and B) = P(A) * P(B | A)Independence Tests (p.211)Use either one, you don't need to do both
If P(A and B) = P(A) * P(B), then A and B are independent.

If P(A and B) = P(A) * P(B|A), then A and B are <u>dependent</u>.

Conditional (p. 216) $P(B | A) = \frac{P(A \text{ and } B)}{P(A)}$

P(at least one of a group has A) = 1 – P(none of the group has A) (p. 218)

COUNTING RULES

Counting Rule (p. 224) total possibilities when 1^{st} event has k_1 possibilities, 2^{nd} event has k_2 possibilities, etc. (may be a factorial)

 $\mathbf{k}_1 \cdot \mathbf{k}_2 \cdot \mathbf{k}_3 \cdots \mathbf{k}_n$

Factorial (p. 227) n! = n(n-1)(n-2) ... 1 but 0! = 1

Permutations (p. 228-9) on calculator or as formula $_{n}P_{r} = \frac{n!}{(n-r)!}$

Combinations (p. 230) on calculator or as formula ${}_{n}C_{r} = {n \choose r} = \frac{n!}{(n-r)!r!}$